Hamilton: Visibility/Invisibility of Brown Brilliance, part II Thursday, Jun 29 2017 

It was written in the books of Europeans we were savage
That our history was insignificant and minds below average
But how can one diminish the worth
Of the most imitated culture on this Earth? – Akrobatik, Black Dialogue

TL;DR

Rap music is extremely brainy. This is objectively obvious, but American culture outside of hip-hop culture has been systematically ignoring it for decades and insisting that rappers are dumb.

Enter Lin-Manuel Miranda and Hamilton. The show has other aims too, but one of them is to explicitly combat this by connecting hip-hop’s linguistic creativity and power – “words’ ability to make a difference” – to the intellectual seriousness and historical import of the writing at the heart of the nation’s founding.

We have responded by enthusiastically missing the point: elevating LMM as a genius, and Hamilton as a work of genius, while continuing to ignore the brilliance of the rap luminaries he is explicitly crediting.

At length

This post was inspired by the following episode:

I was having lunch with a charming gentleman who happens to be the executive director of a media institution. (I will call him “Ed.”) We got on the topic of Hamilton, and Ed gushed:

“The words! The words are so brilliant! It never occurred to me that those words rhymed!”

Ed is not alone in this particular enthusiasm. There are a lot of things about Hamilton that have resonated with audiences, but this type of response (“The words! The WOOORRRDDDS!! Lin-Manuel’s genius words!!!”) is a throughline. (Here is a print example.) And, I appreciate the enthusiasm. The words are frickin awesome.

I am the A-L E-X A-N D
E-R we are meant to be
A colony that runs independently
Meanwhile Britain keeps sh*ttin on us endlessly
Essentially, they tax us relentlessly
Then King George turns around and runs a spendin spree
He ain’t never gonna set his descendants free
So there will be a revolution in this century! – Lin-Manuel Miranda as Alexander Hamilton, Hamilton

Nonetheless, I left lunch secretly pissed. Not at Ed, but at our culture as a whole. Here is the rant that my brain generated:

<rant>

The lyrical pyrotechnics on display in Hamilton are nothing more (nor less) than competent rapping.

There are a lot of things to love about Hamilton, but what you’re talking about — the rhymes — Lin-Manuel Miranda didn’t invent that. He learned it from Biggie, Mobb Deep, Busta. So on. I believe he’d be the first to tell you this.

It’s like it took a highly celebrated Broadway musical lionizing a Founding Father to get you, finally, at long last, to listen intently to rap lyrics, for the first time ever. But then, having listened, and having of course been blown away, you proceeded to tell yourself that you were listening to the unique genius of LMM, rather than acknowledge the radiance hip-hop put before you this whole time.

What’s ironic is that calling your attention to this brilliance is one of the clear intentions of the show. Ever since the first public appearance of the opening number, LMM has made it clear that he sees Alexander Hamilton’s story (“impoverished Carribean immigrant uses his way with words to rise to fame and influence”) as a hip-hop story.

Hamilton literally wrote a verse to get him off an island — that’s the most hip ­hop shit ever. He transcends the struggle, and if you look at your favorite rapper, that’s most likely what they did. – LMM

In this way the play asserts that hip-hop (not Hamilton but hip-hop) is continuous with no less an intellectual and political achievement than the nation’s founding.

So you have a lot of d*mn nerve gushing over this very play while simultaneously acting like you have never heard rhymes like this before.

</rant>

I want to make it very clear that I am not trying to throw Ed under the bus. He’s a great guy. And while his comment did lead me to the thoughts above, it was only because his point of view seemed emblematic of something much bigger. It’s actually part of the lore around Hamilton that both Stephen Sondheim, the legendary musical composer and wordsmith, and Ron Chernow, the biographer who wrote the book on Alexander Hamilton that inspired LMM to create the show, were initially skeptical about hip-hop’s power to tell such a nuanced story.

My point is their skepticism. If American culture had been able to be objective about what hip-hop was doing this whole time, it wouldn’t have taken Stephen Sondheim till this late date to see its sharpness and sophistication. Ample evidence has been all over the place for decades. Sondheim of all people would have recognized kindred spirits.

So while you fumin I’m consumin mango juice under Polaris
Ya just embarrassed, cuz it’s ya last tango in Paris – Lauryn Hill, Zealots

I’m submitting that rap music is not just one of America’s great artistic achievements but one of its great intellectual achievements.

I bomb atomically. Socrates’ philosophies and hypotheses
Can’t define how I be droppin these mockeries – Inspectah Deck, Triumph

But it’s high time for me to hop off any kind of soapbox I may have just climbed, because this is supposed to be dental hygiene: I am not trying to act pure. The truth is that while I beat Ed, Stephen Sondheim, and Ron Chernow by 20 years, I too was late when it came to hearing rap clearly.

I grew up a very nerdy, meticulously well-behaved, and somewhat delicate white kid in an East Coast city. I got to junior high in the early 90’s, by which time rap was beginning to be everywhere, but I didn’t connect to much of it right away. At the time I was listening to folky stuff continuous with what I was raised on. It was serious between me, Paul Simon, and Tracy Chapman. The defiant attitude, crime metaphors, and drug talk of NWA and Cypress Hill didn’t make me feel safe or welcome.

They weren’t supposed to, of course.

What I had trouble seeing at the time — what our country’s ambient but hidden racial ideology meticulously trains us not to see — is that this is completely independent of whether NWA or Cypress Hill were being smart, or interesting, or substantive. Of course they were.

Nonetheless, I resolved the discomfort of my unease with the music’s content by feeling intellectually superior. This is retrospectively preposterous, since it is no longer possible for me to hear these same artists without being amazed by their cleverness. But I was not the first nor the last person (white or otherwise) to make this move. My purpose in telling you this story is the hope that some readers might recognize themselves in it. Maybe distinguishing between “dumb” and “not designed to make you feel at home” is a lot to ask of a white 12-year-old in a country like ours; honestly, I don’t really think it is, but what do I know?

Well, I at least know that when I got to high school, and Biggie dropped, I assumed, entirely incorrectly, that he was just some *sshole who didn’t have anything to offer me. I wasn’t listening.

We used to fuss when the landlord dissed us
No heat, wonder why Christmas missed us
Birthdays was the worst days
Now we sip champagne when we thirstay – Notorious B.I.G., Juicy

It’s not a coincidence that the first rap album I ever bought (in 1994 or so) was the resolutely nonthreatening Tribe Called Quest album containing Can I Kick It?, and the album that fully converted me was The Fugees’ The Score, which, among many other (retrospectively much more amazing) things, name-checks Tracy Chapman in the opening track.

This is a confession of sorts, because although I don’t think it’s unreasonable that I didn’t really get into rap before I felt invited into it in this way, I do think it’s emblematic of a bigger problem that it took this type of invitation for me to even perceive it clearly, as I’ve been at pains to show. But I’m also pointing, in a morally neutral way, to the present moment and Hamilton. My story is that once I felt invited, I started listening to rap (not just hearing but listening), and increasingly on its own terms as time passed. As I did this, the distortion in my young perception fell away. Well, as of Hamilton, we have all, even the squarest of us (Ron Chernow? Ed?), officially been invited.

So, as with any time one receives an invitation, we now have a choice about whether to accept it. We can insist that Hamilton‘s lyricism is the product of Lin-Manuel Miranda’s unique genius, or we can start listening.

LMM himself could not have made it clearer which one he wants us to do. In addition to releasing a Spotify playlist back in 2015 of songs that inspired him while writing the show, he produced an album, The Hamilton Mixtape, handing the show back to other artists to remix. Some of them are clearly people LMM has admired for a very long time. All of them are, equally clearly, people he thinks we should all be listening to.

The most iconic song from the show is My Shot (“hey yo I’m just like my country / I’m young, scrappy and hungry…”), and The Hamilton Mixtape gives a certain pride of place to Busta Rhymes by giving him the dominant verse on that remix. There’s something so fitting about this. When Busta’s amazing gravely voice enters it’s like a homecoming: like meeting the teacher after spending a long time with the disciple. There’s no other way for me to close this post than with that verse.

Throughout my travels and journeys through life I been searchin
And been learnin to be the type of person
To display how determined I get when I’m certain
Inside I feel like fire that’s burnin
Like a knife that is turnin, I fight while I’m hurtin
Sometimes they’re right ’cause life is a burden
Like the pain from a bite that’ll worsen
Tryna stifle the light that’ll shine on me first and
Before I ride in a hearse and…

Hidden Figures: Visibility / Invisibility of Brown Brilliance, Part I Sunday, Jan 22 2017 

Has everybody seen Hidden Figures yet?

It’s delightful: a tight, well-acted, gripping drama, based on a true story about an exciting chapter in national history. You can just go to have a good time. You don’t need to feel like you are going to some kind of Important Movie About Race or whatever. It is totally kid friendly, and as long as they know the most basic facts about the history of racial discrimination, it doesn’t force you to have any kind of conversation you aren’t up for / have every day and don’t need another… / etc. Just go and enjoy yourself.

THAT SAID.

Everybody, parents especially, and white parents especially, please go see this film and take your kids.

I was actually fighting back tears inside of 5 minutes.

Long-time readers of this blog know that I am strongly critical of the widespread notion of innate mathematical talent. I’ve written about this before, and plan on doing a great deal more of this writing in the future. The TL;DR version is that I think our cultural consensus, only recently beginning to be challenged, that the capacity for mathematical accomplishment is predestined, is both factually false and toxic. My views on the subject can make me a bit of a wet blanket when it comes to the representation of mathematical achievement in film – the Hollywood formula for communicating to the audience that “this one is a special one” usually feels to me like it’s feeding the monster, and that can get between me and an otherwise totally lovely film experience.

In spite of all of this, when Hidden Figures opened by giving the full Hollywood math genius treatment to little Katherine Johnson (nee Coleman), kicking a stone through the woods while she counted “fourteen, fifteen, sixteen, prime, eighteen, prime, twenty, twenty-one, …,” I choked up. I had never seen this before. The full Good Will Hunting / Little Man Tate / Beautiful Mind / Searching for Bobby Fischer / Imitation Game / etc. child-genius set of signifiers, except for a black girl!

What hit me so hard was that it hit me so hard. For all the brilliant minds we as a society have imagined over the years, how could we never have imagined this one before now? And she’s not even imaginary, she’s real! And not only real, but has been real for ninety-eight years! And yet this is something that, as measured by mainstream film, we haven’t even been able to imagine.

You’ll do with this what you will, but for me it’s an object-lesson in the depth and power of our racial cultural programming, as well as a step toward the light. I am a white person who has had intellectually powerful black women around me, whom I greatly admired, my whole life, starting with my preschool and kindergarten teachers, and including close friends and members of my own family, as well of course as many of my students. And yet the type of representation that opened Hidden Figures is something that only fairly recently did it begin to dawn on me how starkly it was missing.

So, go see this movie! Take your kids to see it! Let them grow up easily imagining something that the American collective consciousness has hidden from itself for so long.

Think of a Brainy Black Woman in a Hollywood Film Sunday, Sep 25 2016 

So I’m psyched about Queen of Katwe (Disney), starring Lupita Nyong’o and David Oyelowo, based on the true story of young Ugandan chess champion Phiona Mutesi, which just came out. I’m definitely gonna see it this week.

I am also looking forward to the release this winter of Hidden Figures (20th Century Fox), starring Taraji P. Henson, Octavia Spencer, and Janelle Monae, based on the true story of Dorothy Vaughan, Mary Jackson, and Katherine Johnson, and their foundational mathematical contributions to the US space program. I have never ever ever seen a black female mathematician in a major film before.

This got me thinking: in my entire life up til now, have I ever seen a film released by a major Hollywood studio that centered on a brainy black woman and her brainy pursuits? I’ve been musing on this for about 24 hours now. I thought of exactly one: Akeelah and the Bee.

Can you think of any others?

Update 9/29: I thought of two more candidates. They don’t have that same “this woman is taking over the world with her mind alone” quality as all of the above, but they do have something:

Home (20th Century Fox, 2015): it’s not a major theme of the film, but the generally resourceful and awesome main character, voiced by Rihanna, does at a key point figure out the mechanism of a piece of alien technology while boasting of her “A in geometry”…

A Raisin in the Sun (Columbia Pictures, 1961): Beneatha’s intellectual pretensions don’t exactly drive the plot, but they are pretty central to her character. If you want to see what I mean and are up for being made a little upset, click here (the “in my mother’s house…” scene if you know it).

I want more! Please help!

Update 1/7/17: Having sat on this blog post for a few months now, I feel that the previous update dilutes the point a bit. Akeelah and the Bee, Queen of Katwe, and Hidden Figures, are the only movies of their kind I can think of. (Per the description above: produced by Hollywood, centered on a brainy black woman and her brainy pursuits.) I earnestly want to know if more exist. I am very excited there have been 2 inside of 6 months.

If I ask for “that kind of movie” only without the requirement that the lead be black and female, then we are swimming in them: Good Will Hunting, Theory of Everything, Imitation Game, Beautiful Mind, The Man Who Knew Infinity, Little Man Tate, Searching for Bobby Fischer, … shall I keep going?

For a quick and dirty numerical sample of the status quo: here is a list, compiled by a random IMDB user, of “movies about geniuses.” I found it among the first few hits upon googling “movies about smart people.” On this list I see 35 distinct titles. (The list says 42 but I see 7 repeats.) Of these, by my count the “geniuses” include 32 white boys/men, 1 black man, 1 East Asian man, and 1 white woman.

The fact that I managed, scraping my memory, to find a movie (Home) centered on a black girl who at some point in the film does something cool with her brain, is irrelevant to this stark picture. (This is not a knock on Home, which I loved.) If we want to bring it into the conversation, then we should put it in the context of every movie centered on a character that at some point does something cool with their brain. This is a lot of movies, way too many to make any kind of list.

If I allow the character in question not to be the main character (as in Raisin in the Sun; and if I allow us to leave Hollywood, 2012’s Brooklyn Castle and 2002’s Spellbound come to mind), then we are talking about every movie containing a character with plausible intellectual aspirations. Again, way too many to start listing.

The upshot: representations of brainy black women in (Hollywood) film have been exceedingly, shockingly rare. If you have taught in any place that has black people, you know that brainy black women are not rare in real life. Our national culture has had a very limited imagination in this regard. So let’s all effing go see Hidden Figures as soon as we possibly can. Independent of all this, I’ve heard it’s very good.

Some work I’m proud of Friday, Aug 14 2015 

T was a third grader when all this went down.

At a previous session, I had asked T what she knew about multiplication, and she had told me, among other things, that 4\times 6 is four sixes, and because that’s 24, she also knew that six fours would be 24. I asked why she said so and she didn’t know why. I asked her if she thought this would always be true for bigger numbers, or could it be possible that there were some big numbers like 30,001 and 5,775 for which 30,001 5775’s was different than 5,775 30,001’s. She wasn’t sure. I asked her if she thought it was a good question and she said she thought it was.

So this session I reminded her of this conversation. I forget the details of how we got going on it; I remember inviting her to wonder about the question and note that there is something surprising about the equality between four sixes and six fours. She could count up to 24 by 4’s and by 6’s and mostly you hit different numbers on the way up, so why do the answers match? And would it be true for any pair of numbers? But the place where I really remember the conversation is when we started to get into the nuts and bolts:

Me: Maybe to help study it we should try to visualize it. Can you draw a picture of four sixes?

T draws this –

Tessa 4 6's cropped

Me: Cool! Okay I have a very interesting question for you. You know how many dots are here –

T: 24 –

Me: and you also told me that six 4’s is also 24, right?

T: yes.

Me: – so that means that there must be six 4’s in this picture! Can you find them?

T: I don’t understand.

Me [writing it down as well as saying it this time]: You drew a picture of four 6’s here, yes?

T: Yes.

Me: And that’s 24 dots, yes?

T: Yes.

Me: And you told me before that 24 is also six 4’s, yes?

T: Yes.

Me: So it must be that right here in this picture there are six 4’s!

[It clicks.] T: Yes!

Me: See if you can find them!

At this point, I go wash my hands. An essential tool that has developed in my tutoring practice is to give the student the social space to feel not-watched while they work on something requiring a little creativity or mental looseness, or just anything where the student needs to relax and sink into the problem or question. The feeling of being watched, even by a benevolent helper adult, is inhibitive for generating thoughts. Trips to wash hands or to the bathroom are a great excuse, and I can come back and watch for a minute before I make a decision about whether to alert the student to my return. I also often just look out the window and pretend to be lost in thought. Anyway, on this particular occasion, when I come back, T has drawn this:

Tess 4 6's recircled cropped

T: I found them, but it’s not… It doesn’t…

I am interrupting because I have to make sure you notice how rad she’s being. The child has a sense of mathematical aesthetics! The partition into six 4’s is uglifying a pretty picture; breaking up the symmetry it had before. It’s a kind of a truth, but she isn’t satisfied with it. She senses that there is a more elegant and more revealing truth out there.

This sense of taste is the device that allows the lesson to move forward without me doing the work for her. Her displeasure with this picture is like a wall we can pivot off of to get somewhere awesome. Watch:

Me: I totally know what you mean. It’s there but it doesn’t feel quite natural. The picture doesn’t really want to show the six 4’s.

T: Yeah.

Me: You know what though. You had a lot of choice in how you drew the four 6’s at the beginning. You chose to do it this way, with the two rows of three plus two rows of three and like that. Maybe you could make some other choice of how to draw four 6’s that would also show the six 4’s more clearly? What do you think? You wanna try to find something like that?

T: Yes! [She is totally in.]

At this point I go to the bathroom. I hang out in the hall for a bit when I get back because she seems to still be drawing. Finally,

Me: Did you find out anything?

T: I drew it a lot of different ways, but none of them show me the six 4’s…

She’s got six or seven pictures. One of them is this –

4x6 cropped

Me: Hey wait I think I can see it in this one! (T: Really??) But I can’t tell because I think you might be missing one but I’m not sure because I can’t see if they are all the same.

T immediately starts redrawing the picture, putting one x in each column, carefully lined up horizontally, and then a second x in each column. As she starts to put a third x in the first column, like this,

neat one cropped

she gasps. Then she slides her eyes sideways to me, and with a mischievous smile, adds this to her previous picture:

final cropped

The pieces just fell into place from there. Again I don’t remember the details, but I do remember I asked her what would happen with much bigger numbers – might 30,001 5,775’s and 5,775 30,001’s come out different? And she was able to say no, and why not. Commutativity of multiplication QED, snitches!

Hard Problems and Hints Friday, Jul 11 2014 

I have a friend O with a very mathematically engaged son J, who semi-often corresponds with me about his and J’s mathematical experiences together. We had a recent exchange and what I was saying to him I found myself wanting to say to everybody. So, without further ado, here is his email and my reply (my take on Aunt Pythia) –


Dear Ben,

J’s class is learning about volume in math. They’ll be working with cubes, rectangular prisms and possibly cylinders, but that’s all. He asked his teacher if he could work on a “challenge” that has been on his mind, which is to find a formula for the volume of one of his favorite shapes, the dodecahedron. He build a few of these out of paper earlier in the year and really was/is fascinated with them. I think he began this quest to find the volume thinking that it would be pretty much impossible, but he has stuck with it for almost a week now. I am pleased to see that he’s not only sticking with it, but also that he has made a few pretty interesting observations along the way, including coming up with an approach to solving it that involves, as he put it, “breaking it up into equal pieces of some simpler shape and then putting them together.” After trying a few ways to break/slice up the dodecahedron and finding that none of them seemed to make matters simpler, he had an “ah ha” moment in the car and decided that the way to do would be to break it up into 12 “pentagonal pyramids” (that’s what he calls them) that fit together, meeting at the center of rotation of the whole shape. If we can find the volume of one of those things, we’re all set. A few days later, he told me that he realized that “not every pentagonal pyramid could combine to make a dodecahedron” so maybe there was something special about the ones that do, i.e., maybe there is a special relationship between the length of the side of the pentagon and the length of the edge of the pyramid that could be used to form a dodecahedron.

He is still sticking with it, and seems to be having a grand time, so I am definitely going to encourage him and puzzle through it with him if he wants.

But here’s my question for you…

I sneaked a peak on google to see what the formula actually is, and found (as you might know) that it’s pretty complicated. The formula for the volume of the pentagonal pyramid involves \tan 54 (or something horrible like that) and the formula for the volume of a dodecahedron involves 15 + 7\sqrt{5} or something evil like that. In short, I am doubtful that he will actually be able to solve this problem he’s puzzling through. What does a good teacher do in such a situation? You have a student who is really interested in this problem, but you know that it’s far more likely that he will hit a wall (or many walls) that he really doesn’t have the tools to work through. On the other hand, you really want him to find satisfaction in the process and not measure the joy or the value of the process by whether he ultimately solves it.

I certainly don’t care whether he solves it or not. But I want to help him get value out of hitting the wall. How do you strike a balance so that the challenge is the right level of frustrating? When is it good to “give a hint” (you’ve done that for me a few times in what felt like a good way… not too much, but just enough so that the task was possible).

In this case, he’s at least trying to answer a question that has an answer. I suppose you could find a student working on a problem that you know has NO known answer, or that has been proven to be unsolvable. Although there, at least, after the student throws up his hands after giving it a good go, you can comfort her by saying, “guess what… you’re in good company!” But here, I’d like to help give him some of the tools he might use to actually make some headway, without giving away the store.

I think he’s off to a really good start — learning a lot along the way – getting a lot of out the process, the approach. I can already tell that many of the “ah ha” moments have applicability in all sorts of problems, so that’s wonderful.

Best, O

Dear O,

Wow, okay first of all, I love that you asked me this and it makes me really appreciate your role in this journey J is on, in other words I wish every child had an adult present in their mathematical journey who recognizes the value in their self-driven exploration and is interested in being the guardian of the child’s understanding of that value.

Second: no matter what happens, you have access to the “guess what… you’re in good company” response, because the experience of hitting walls as you try to find your way through the maze of the truth is literally the experience of all research mathematicians, nearly all of the time. If by any chance J ends up being a research mathematician, he will spend literally 99% or more of his working life in this state.

In fact, I would want to tweak the message a bit; I find the “guess what… you’re in good company” a tad consolation-prize-y (as also expressed by the fact that you described it as a “comfort”). It implies that there was an underlying defeat whose pain this message is designed to ameliorate. I want to encourage you and J both to see this situation as one in which a defeat is not even possible, because the goal is to deepen understanding, and that is definitely happening, regardless of the outcome. The specific question (“what’s the volume of a dodecahedron?”) is a tool that’s being used to give the mind focus and drive in exploring the jungle of mathematical reality, but the real value is the journey, not the answer to the question. The question is just a tool to help the mind focus.

In fairness, questing for a goal such as finding the answer to a question and then not meeting the goal is always a little disappointing, and I’m not trying to act like that disappointment can be escaped through some sort of mental jiu-jitsu. What I am trying to say is that it is possible to experience this disappointment as superficial, because the goal-quest is an exciting and focusing activity that expresses your curiosity, but the goal is not the container of the quest’s value.

So, that’s what you tell the kid. Way before they hit any walls. More than that, that’s how you should see it, and encourage them to see it that way by modeling.

Third. A hard thing about being in J’s position in life (speaking from experience) is that the excitement generated in adults by his mathematical interests and corresponding “advancement” is exciting and heady, but can have the negative impact of encouraging him to see the value of what he’s doing in terms of it making him awesome rather than the exploration itself being the awesome thing, and this puts him in the position where it is possible for an unsuccessful mathematical expedition to be very ego-challenging. This is something that’s been behind a lot of the conversations we’ve had, but I want to highlight it here, to connect the dots in the concrete situation we’re discussing. To the extent that there are adults invested in J’s mathematical precociousness per se, and to the extent that J may experience an unsuccessful quest as a major defeat, these two things are connected.

Fourth, to respond to your request for concrete advice regarding when it is a good idea to give a hint. Well, there is an art to this, but here are some basic principles:

* Hints that are minimally obtrusive allow the learner to preserve their sense of ownership over the final result. The big dangers with a hint are (a) that you steal the opportunity to learn by removing a part of the task that would have been important to the learning experience, and (b) that you steal the experience of success because the learner doesn’t feel like they really did it. These dangers are related but distinct.

* How do you give a minimally obtrusive hint?

(a) Hints that direct the learner’s attention to a potentially fruitful avenue of thought are superior to hints that are designed to give the learner a new tool.

(b) Hints that are designed to facilitate movement in the direction of thought the learner already has going on are generally better than hints that attempt to steer the learner in a completely new direction.

* If the learner does need a new tool, this should be addressed explicitly. It’s kind of disingenuous to think of it as a “hint” – looking up “hint” in the dictionary just now, I’m seeing words like “indirect / suggestion / covert indication”. If the learner is missing a key tool, they need something direct. The best scenario is if they can actually ask for what they need:

Learner: If I only had a way to find the length of this side using this angle…
Teacher: oh yes, there’s a whole body of techniques for that, it’s called trigonometry.

This is rare but that’s okay because it’s not necessary. If the teacher sees that the learner is up against the lack of a certain tool, they can also elicit the need for it from the learner:

Teacher: It seems like you’re stuck because you know this angle but you don’t know this side.
Learner: Yeah.
Teacher: What if I told you there was a whole body of techniques for that?

Okay, those are my four cents. Keep me posted on this journey, it sounds like a really rich learning experience for J.

All the best, Ben

I Don’t Get It vs. I Don’t Buy It Wednesday, Jul 24 2013 

I was having a conversation a few weeks ago with a computer programmer and math enthusiast whom I’ll call Dorian. He was arguing very passionately that talking about a square root of -1 was the wrong way to introduce complex numbers. He recounted this moment in his own schooling: 16 year old Dorian, told by his teacher “we introduce a new number i whose square is -1…,” asking, “but I can prove that the square of any number is positive, what about that?!” His teacher wasn’t able to satisfy his objection and made him feel that it wasn’t valid. He left the experience feeling angry and frustrated and that his question had been treated as a failure to understand.

Dorian later learned that complex numbers can be visualized as a plane containing the real line; that addition of points in this plane is just vector addition; and that multiplication is done by multiplying the distances from the origin and adding the angles from the positive real axis (see here for a brief explanation if desired). Here was a concrete model for the complex numbers, with concrete geometrical interpretations of the operations + and \times. And it was clear to him that in this model, there is a point, in fact two points, whose squares correspond to the point -1 on the real axis. But philosophically, this fact is a consequence of the concrete geometrical description of the operations in the plane, rather than an ontologically dubious starting point for the whole project.

Dorian concluded that actually this model, via the geometry of addition and multiplication in the complex plane, is a pedagogically superior introduction to the complex numbers. His argument is that it presents no ontological quandary. Nobody will object to a plane. Nobody will object, at least on philosophical grounds, to these new definitions of + and \times, as long as you can prove they have nice properties and coincide with the old definitions on the real line. You’re not saying anything so wildly speculative as “postulate a square root of -1…”

I am not writing this post to get into the question of whether Dorian is right about this. I see lots to say on both sides. What I am writing this to say is that there is a lesson in Dorian’s story much deeper than the question of how to introduce the complex numbers. That is not the real question here as far as I am concerned.

The real question is this: when you’ve picked your approach and gone with it, how will you deal with the students it doesn’t work for?

Now you can always obsess about how to introduce a topic, and I believe there is basically always value in thinking and talking about the pedagogical consequences of different ways of looking at things. And I think some models for ideas are legitimately better than others. But no model will speak to every student. This point is so important, and was so lost on me as a young teacher, and is lost on so many (especially young) teachers that I have spoken with, so excited that they are about the way they have thought of to present negative numbers or whatever, as though miraculously everyone in the room will get it this time, that I need to repeat it:

There is no model that is the right model for each and every student, each and every time.

No matter how awesome your idea for how to think about XYZ concept is, there will be somebody in your class who will have no idea what you are talking about. To me, the big question here is, what are you going to do about it?

More specifically, how are you going to treat their thinking?

Now, I like to think that nobody reading this blog would be so callous as to intentionally make a student feel stupid for asking an honest question. But there are far subtler ways to do it. The one I most want to warn you against is the sin I know I’m guilty of: being so wrapped up in the awesomeness of your presentation that the kid who doesn’t get it does not compute to you. You say whatever you say out loud but in your mind you’re like, “wait – you don’t understand? Huh?” Or, you’re like, “oh my goodness can’t you just see it as I do?”

Regardless of what you say out loud, having such a response in the back of your mind invalidates whatever obstacle the student is facing. I want to suggest an alternative:

Take the case that any earnest failure of a student to see your point of view is actually coming from a legitimate mathematical objection.

This is how you treat dissatisfaction with honor.

I don’t care what the kid’s IEP says. Mathematical convention does not require us to check somebody’s Wechsler results before they are allowed to raise an objection. If they don’t buy it, they don’t buy it. Now it’s your turn to understand their objection and answer it.

“I don’t get it.” “I don’t buy it.”

A student I’ll call Manny, whom I had in my 2003-4 AP Calculus class, came to me around March and said something like, “this entire class is based on a paradox.” He objected to my (retrospectively totally hand-wavy) discussion of limits. It never gets there, so how can you talk about what happens if it were to get there?

I tried to answer Manny’s objections; I spent some time with him on it; but he left the conversation unsatisfied. Retrospectively it is clear to me that this is because (a) I didn’t get what the problem was, and (b) to my shame I didn’t consider the possibility that there was really much to it. Then, less than a year later, I read The Calculus Gallery, whereupon I learned that actually Manny’s objection was more or less exactly Bishop Berkeley’s famous objection that in due time forced mathematicians to invent real analysis. For a sense of the importance of this development, let me mention that I have read, though I don’t recall where right now, that the development of real analysis was really the event that led to the birth of modern mathematical rigor.

So, yes, I am on record as having treated as essentially invalid an objection that actually led to the creation of modern rigor. Don’t let that be you.

If they don’t get it, take the case that there’s a legitimate mathematical objection behind that. Treat their “I don’t get it” as “I don’t buy it.” Now getting them to buy it is your job.

The Talent Lie Monday, Aug 9 2010 

Back in the fall when I was a baby blogger I wrote a discussion of Carol Dweck’s research about intelligence praise. I did this because I think this research is intensely important. However, I didn’t really let loose on the subject with the full force of what I have to say about it. The truth is I was shy, because a) I’d just had a kind of frustrating conversation on the subject with Unapologetic at Jesse Johnson’s blog, so I was wary of being misunderstood, and b) more embarrassingly, I was excited by the positive response to my previous post about Clever Hans and I didn’t want to alienate any of my new audience.

Now I am a toddler blogger. My godson, with whom I spent the day a few weeks ago, is an actual toddler.
My Godson
He is profoundly unconcerned with anybody’s opinion of him, and just blazes forth expressing himself (climbing on things; coveting whatever his big sister is playing with; being turned upside down as much as possible) all day long. I am going to take this as inspiration, and commence a series of posts about the idea of “math smarts” and talent and intelligence more broadly. These posts have two central contentions:

1) People constantly interpret mathematical accomplishment through the lens of math talent or giftedness.

2) This is both factually misleading and horrible for everyone.

Tentatively, here is the table of contents for this series. I may edit these titles, add or remove some, and I’ll add links when I’ve got the posts up. But here’s the plan for now:

I. Why the talent lie is a lie; how to understand math accomplishment outside of it
II. How the talent lie is spread (in pop culture, and inside the discipline of mathematics)
III. How the talent lie hurts people who are “good at math”
IV. How the talent lie hurts people who are “bad at math”
V. How to train students to understand math accomplishment outside of the talent lie
VI. Why the talent lie is so entrenched, even though it is stupid and harmful

I should make more precise what I mean by “the talent lie.” It’s really several variants on a fundamental idea. People who are really good at math must have been born with a gift, for example. That they must be extra smart. That being good at math (or not) is something that doesn’t change over time. That being smart (or not) doesn’t change. In short, that your intellectual worth, and the worth of your engagement with the field of mathematics in particular, is an already-determined quantity that’s not up to you. That’s the talent lie.

Some examples of the talent lie at work:
* Any time anyone has ever said, “I’m bad at math.”
* The “gifted” in gifted education.
* Just about any time anybody makes a big deal about the age by which a young person does something intellectual. (Starts talking, starts reading, starts learning calculus…)

(In that last bullet, the “just about” is there only because of the theoretical possibility that a big deal might get made for a reason other than to prognosticate about the person’s ultimate intellectual worth.)

I give you these examples to show that I am not talking about a fringe, outmoded idea but something very mainstream. I will have much more to say about how the talent lie is manifested in the forthcoming posts.

I expect to spend a long time writing them. This project may take all fall year the next several years decade. I believe the message I’m communicating is vital for our field and important more broadly as well. It’s also a very personal message. Like all urban educators and all math teachers, I have a lot of first-hand experience with the damage that the labels “not smart” and “not good at math” can inflict. But I am also speaking as someone who spent my early years being seen by others, and regarding myself, as mathematically gifted. This was a heady and thrilling thing when I was in middle school, but I became vaguely aware of the complications by the end of high school, and with hindsight it’s clear that it left me with baggage that took a decade of teaching, learning and introspection to shake. So my own journey is a big part of the story I’m telling here.

I will save the detailed analysis for the forthcoming posts, which means that I am going to defer a lot of clarification and answering-questions-you-might-have for later. But I would like now to articulate in broad terms what I believe needs to change.

According to the Calvinist doctrine of unconditional election, God already decided whether you are going to be damned or saved, and did this way before you were born. Nothing you can do – not a life of good acts, not a wholehearted and humble commitment to acceptance or faith – can have any effect. The most you can do is scan your life for signs of God’s favor, and read the clues like tea-leaves to see if you are chosen or cast away. Modern American culture doesn’t buy this doctrine from a theological point of view, but is 100% bought in when it comes to math. When a person performs mathematically, we obsessively look at the performance, not on its own terms, but as a sign one way or the other on the person’s underlying mathematical worth, a quantity we imagine was fixed long ago.

We need, as a culture, to gut-renovate our understanding of what’s going on when we see people accomplish impressive mathematical feats. Likewise, when people fail at mathematical tasks. We need to stop seeing people’s mathematical performance as nothing more than the surface manifestation of a well-spring of mathematical gifts or talent they may or may not have. Relatedly but even more importantly, we need to stop reading the tea-leaves of this performance to determine these gifts’ presence or absence. This whole game is bunk.

Not only is it bunk but it’s a crippling distraction, for everyone – teachers, students, parents, and our culture as a whole – from the real job of studying, wandering through, becoming intimate with and standing in awe of the magnificent edifice known as the discipline of mathematics.


When you step to the gate and present yourself before it, math doesn’t give a sh*t about the particular profile of cognitive tasks that are easy and hard for you at this moment in time, and you shouldn’t either. There are institutions that are very keen to divine from this profile your worthiness to enter, but this is the curtain they hide behind to make themselves look bigger than they are. It’s time to tear that curtain down.

More on its way. In the meantime here is some related reading:

* I Speak Math recently tackled this same subject. I plan on drawing on some of the research she links.

* Jesse Johnson and I had a conversation about this stuff close to a year ago, and she wrote about it here and here. I’ll go into much more detail on these themes in the coming posts.

* While not as credentialed, the Wizard of Oz nonetheless has a fair amount in common with wolverine wranglers. See if you see what I mean.